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Matrix Theory in Curved Space
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We study curved-space versions of matrix string theory taking as a definition of
the theory a gauged matrix sigma model. By computing the contribution to the
one-loop divergent terms in the effective action coming from the diagonal matrix
elements we show that these versions of matrix theory in curved space reproduce
the string equations of motion and the R4 correction to the Hilbert±Einstein
action. It is then demonstrated that the divergences due to the nondiagonal
elements induce terms in the effective action that cannot be removed by
appropriate counterterms. This implies that the model can only be consistent for
Ricci flat manifolds with vanishing six-dimensional Euler density.

1. INTRODUCTION

Matrix string theory [2±4] is hoped to provide a nonperturbative defini-

tion of type IIA string theory. Although a full analysis of the string iteractions

within the framework of matrix theory is lacking, it is believed that free
strings emerge naturally from the moduli space of low-energy configurations

of matrix theory. More precisely, the free string states are formed from

ª winding sectorsº in which large numbers of eigenvalues form, via twisted

boundary conditions, long string configurations composed of an order-N
number of eigenvalues. The large-N limit corresponds to taking a finer and

finer discretization of the light-cone string world-sheet into infinitesimal
strips, and corresponds to taking the conformal limit of the theory. From this

conformal field theory point of view string interactions can be argued to be

described by an irrelevant, local CFT operator [4 ].

One of the main features of matrix string theory is the intrinsically

noncommutative nature of the model. Indeed although the theory reduces to
independent copies of the light-cone Green±Schwarz action of type IIA string
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theory when reduced to diagonal matrices, there is no such interpretation

when the matrices are nondiagonal. For this reason it not trivial to try to

extend the matrix string theory to curved space. There is a more physical
obstruction which is linked to the nature of the light-cone frame. In superstring

theory in 10-dimensional Minkowski space the light cone can be defined

globally; in a curved background the light cone is only local. In particular

it is not clear that one can define a curved version of matrix string theory

directly in the light-cone gauge without missing some of the global features

of string theory on a curved background.
Despite these provisos it is possible to define a natural generalization

of matrix string theory using supersymmetric gauged sigma models [8±10].

These models are closely related to the curved background versions of string

theory. In particular, we shall compare our results to the string equations of

motion in a curved background. In string theory the classical equations of

motion for the effective theory can be found either from tree level string
scattering amplitudes or from the consistency conditions (conformal invari-

ance) of the action for a noninteracting string propagating in a curved space

with background fields. Similarly, it is worth exploring what can be learnt

from the consistency conditions on curved-space versions of matrix string

theory. We study here the conditions imposed on the curved-space versions
of matrix string theory in which perturbative string theory is hoped to be

recovered. We will show below that such models are only consistent for an

extremely limited class of manifolds, i.e., Ricci flat manifolds with vanishing

Euler class. An example is provided by the direct product M 5 S 3 C,

where S is a hyper-KaÈ hler surface. This is, for instance, the case of the ALE

spaces [11].
We begin in Section 2 by recalling the essential elements of matrix

string theory. In Section 3 we review the proposals for D-brane actions/matrix

theory in curved space put forward by Douglas et al. [8±10]. In Section 4

we focus on the divergent part of the calculation of the effective action and

show that it reduces to a simple matrix generalization of the string theory

beta function calculation. Having mapped the calculation to that of the string
beta function, we use known four-loop results [12 ] to demonstrate that the

effective action can only be consistent for Ricci flat manifolds with vanishing

six-dimensional Euler density. More details can be found in ref. 1.

2. N 5 8 TWO-DIMENSIONAL SUPER YANG ± MILLS AND
MATRIX STRING THEORY

In this section we summarize the essential ingredients of the correspon-

dence between the dimensional reduction of 10-dimensional super-Yang±

Mills theory and type IIA string theory. The two-dimensional action reduces to
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[X I, X J ]2 1
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2gs

Q T g I [X I, Q ] G (1)

The fields are N 3 N Hermitian matrices. The index I runs from 1 to 8 and

the 16 fermions split into the 8s and 8c spinorial representations of SO(8).

The string coupling constant of the type IIA string theory is gs. The coordinate

s lives between 0 and 2 p .
According to ref. 4, the weakly coupled string is to be obtained from

the gs ® 0 limit corresponding to the infrared limit of the SYM theory. In

this regime the matrices commute and describe strings in the light-cone frame.

The corresponding action evaluated for these configurations is the sum of N
replicas of the light-cone Green±Schwarz action. In this limit the matrix

coordinates can always be diagonalized using unitary transformations U

X I 5 UxIU (2)

The matrix U is defined up to an element g of the Weyl group of U(N )

permuting the eigenvalues,

U( s 1 2 p ) 5 U( s )g, xI( s 1 2 p ) 5 gxI( s )g ² (3)

The infrared regime is then identified with the two-dimensional conformal

field theory described by the N 5 8 sigma model on the target space

SNR8 5 (R8)N/SN (4)

The freely propagating strings in the light-cone frame are identified in the
limit N ® ` with the cycles of the eigenvalues xI under the permutation group.

It is useful at this point to reformulate the action (1) in a way that

generalizes easily to a curved background. A supersymmetric and gauge-

invariant action can be written using the d 5 4, N 5 1 superfield formalism.

The four gauge fields belong to a vector multiplet V, while the bosonic fields

belong to three chiral multiplets F i. The eight bosonic fields of the original
action thus split into a group of six belonging to the three chiral multiplets

and two obtained by dimensional reduction of the 4D gauge fields belonging

to the vector multiplet. This formulation breaks the global SO(8) symmetry

into SO(6) 3 SO(2). The full SO(8) symmetry is restored by going to the

Wess±Zumino gauge. The Lagrangian is

S 5
1

a 8
tr 1 # d 2x d 4 u egV F e 2 gV F Å ² 1

1

64g2 # d 2x d 4 u W 2

1
ig

3! ! a 8 # d 2x d 2 u e ijk F i F j F k 1 cc 2 (5)
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where g 2 2 5 a 8g2
s is the YM coupling constant and W a 5 DÅ 2 e gVD a e 2 gV. The

two-derivative Lagrangian of the 4D N 5 4 SYM theory is finite; in particular

the beta function vanishes.

3. CURVED SPACE ACTIONS

Candidate formulations for D-brane actions in curved space have been

been proposed in refs. 8±10. For small curvatures a single D-brane is described

by the Born±Infeld theory. The crucial point is that this contains a U(1)
gauge field which becomes non-Abelian when N D-branes coincide. In the

low-energy regime this reduces to a SYM theory on the world volume of

the D-branes. In curved space the D-brane action should combine the non-

Abelian nature of the gauge theory and a fraction of the original 16 supersym-

metries preserved by the D-brane configuration.

A set of axioms has been proposed in ref. 10 to describe the possible
actions. A particularly natural set of D-brane actions in this context are those

obtained from the the dimensional reduction of a 4D (N 5 1) U(N ) SYM

theory to d 1 1 dimensions [8 ]. The curved background is a 3D complex

KaÈ hler manifold whose metric depends on a KaÈ hler potential K. The vector

superfields contain (3 2 d ) real, flat coordinates. Notice that the splitting of

the background manifold implies that the original SO(8) global symmetry is
reduced to SO(3 2 d ). The case d 5 1 corresponds to the matrix string

theory, while d 5 0 is a curved version of the matrix model for M-theory.

In a setting adapted to our purposes the axioms amount to the following

two requirements for the D-brane action defined on a 3-dimensional KaÈ hler

manifold }.

(a) The classical moduli space, determined by the vanishing of the D
and F terms of the SYM theory, is the symmetric product }N/SN.

(b) The action is a single trace.

These axioms imply that the action in curved space reads

S 5
1

a 8
tr F # d d 1 1x d 4 u K(egV F e 2 gV, F Å ² )

1 1 # d d 1 1x d 4 u W( F ) 1
1

64g2 # d d 1 1x d 2 u W a W a 1 cc 2 G (6)

The analysis of axiom (a) leads to the following form for the superpotential:

W 5 e ijka
i( F ) [F j, F k ] (7)

where ai( F ) is a holomorphic vector field in the adjoint representation of



Matrix Theory in Curved Space 2749

the gauge group. We use the most general KaÈ hler potential allowed by

supersymmetry and gauge invariance. We will use the fact that there exists

around each point of the moduli space a set of normal KaÈ hler coordinates.
These coordinates are such that locally

K(z, zÅ ) 5 zzÅ 1 (
1

Ln 2 2
R

KI1 ? ? IpIÅ p 1 1 ? ? IÅ n z I1 ? ? z Ip zÅ Ip 1 1 ? ? zÅ n (8)

The existence of this expansion is guaranteed up to an analytic change of
coordinates on the curved manifold. By definition the KI1 ? ? IÅ pIp 1 1 ? ? IÅ n are symmet-

ric with respect to arbitrary reorderings of the holomorphic indices and

arbitrary reorderings of the antiholomorphic indices. Finally, since we are

dealing with matrices, there is a question of ordering in the KaÈ hler potential.

The most natural ansatz is to assume that all terms in the KaÈ hler potential

are symmetrized products of matrices, but there could be more general order-
ings. The fourth-order term, for example, can be written as

KIKJÅ LÅ [d F I F K F Å JÅ F Å LÅ 1 t F I F Å JÅ F K F Å LÅ ] (9)

where d and t 5 1 2 d are constants. It is also possible for the KaÈ hler

potential to contain terms proportional to commutators of matrices since these

vanish for the classical moduli space (diagonal matrices). In fact it was found

in ref. 10 that imposing the axioms stated above constrains the fourth-order

term to be the totally symmetrized product ( d 5 2/3, t 5 1/3) with no

additional terms corresponding to commutators.
Let us first use a very naive argument to justify the link between the

matrix string theory on a curved background and the type IIA string theory

in curved space. Substituting the diagonal matrices describing the moduli

space } in the action leads to a sum of N copies of the U(1) gauged sigma

model in two dimensions. The gauge part of the action describing the flat
component of the background manifold decouples and one is left with N
copies of the sigma model defined by the background curved manifold

1

a 8 # d 2x d 4 u K( F , F Å ) (1 0)

where F represents one of the N components. The analysis of this action

reveals that there are two-dimensional UV divergences. These logarithmic

divergences can be canceled up to three-loop order by imposing that the

Ricci tensor vanishes

R IJÅ 5 0 (11)

This is the usual Einstein equation as deduced from the conformal invariance
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of string theory. At four-loop order this is no longer true; the beta function

is nonzero for Ricci-flat manifolds. The divergence is proportional to

RhkmnR
h
rs

n(Rksrm 1 Rkmrs) (12)

This is equivalent to the result obtained from the calculation of the four-

graviton scattering for type IIA theory. This leads to a correction of the

effective 10D supergravity action and the familiar R4 term.

It seems therefore that a naive application of matrix theory in curved
space leads to the correct identification of the string equations. This is mis-

leading, as a detailed analysis expounded in the following will show.

4. THE EFFECTIVE ACTION IN A CURVED BACKGROUND

In the previous section we have defined the curved background version

of the matrix string theory. This involves an explicit splitting between the
six curved coordinates represented by a nonlinear sigma model coupled to

SU(N ) YM fields and the two coordinates obtained by dimensional reduction

of the four-dimensional YM gauge fields. We are interested in the equivalence

between this theory and string theory in a curved background. In particular

we have seen that a naive calculation of the effective action for diagonal

configurations leads to the string equations. In this section we reexamine this
issue by properly integrating over the background fluctuations to arrive at

an effective action for the diagonal configuration. We will focus solely on

the divergent contributions to the KaÈ hler potential. We will show that the

resulting effective action can only be consistent for a very limited class

of manifolds.

4.1. Superfield Reduction

Separating the chiral superfields and the vector superfields into diagonal
and off-diagonal parts, the effective action for the diagonal fields is obtained

by integrating over the off-diagonal elements f and v and the fluctuations

of the diagonal parts f d and vd. The resulting effective action possesses a

modified KaÈ hler potential KR in such a way that

Seff 5
1

a 8 # d 2x d 4 u KR( F d , F Å d) (13)

The superpotential is not renormalized and vanishes for diagonal configura-
tions. The renormalized KaÈ hler potential is obtained after removing the UV

divergences leading to poles in 1/ e when using dimensional regularization.

These poles correspond to the logarithmic divergences of the sigma models

in two dimensions. One can proceed systematically to find the divergence
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for a general loop diagram. If one has L loops with P propagators of any type,

C of which are chiral±antichiral propagators, we have the degree of divergence

div 5 2L 2 2P 1 2C 2 2L 5 2 2(P 2 C ) (14)

We thus see that for divergent diagrams P 5 C. We are thus left with

examining the divergences due to chiral diagrams with no superpotential
insertions and no gauge fields.

4.2. Chiral Diagrams

As stated above, it is known that in string theory the one-, two-, or

three-loop divergent contributions disappear for Ricci flat manifolds, while

at four loops there is a correction that only disappears for manifolds with a

vanishing six-dimensional Euler density. The divergences lead to the famous
R4 term being added to the low-energy effective action for the massles modes

of the string. In other words, Ricci flatness is a low-order approximation

corrected by terms of higher order in a 8.
For the curved-space versions of matrix theory, however, there are two

types of chiral diagrams. First there are those coming from the expansion of

the KaÈ hler potential in terms of the diagonal fluctuations only. This is nothing
but N copies of the two-dimensional sigma model with values in a three-

dimensional complex KaÈ hlerian manifold. Second there are diagrams involv-

ing the off-diagonal part of f . These will lead to divergent terms involving

one or more diagonal elements, i.e., to terms consisting of products of traces.

Since these are not included in the original action, they have to be set to

zero. In other words, we find that each loop order has to be individually set
to zero. This is a more stringent restriction than in string theory.

Retaining only at each loop order the contribution due to the diagonal

matrices is a simple generalization of the string-theory beta-function result

(we study this question below). We see that, in particular, the four-loop term

has to be set to zero. This implies that the curved manifold must be Ricci
flat with a vanishing Euler class. This is, for instance, the case of products

M 3 C, where M is hyper-KaÈ hler. In particular, the ALE spaces are good

candidates for a description of matrix string theory in curved space.

This result thus restricts quite severely the range of applicability of

matrix sigma models as descriptions of matrix theory in curved space. Up

to now we have only considered the terms due to the diagonal matrices. This
is not sufficient to guarantee the finiteness of the model. We now turn to

off-diagonal contributions. We will only examine them at the one-loop order.

4.3. One-Loop Contribution

It is not immediately obvious that Ricci flat metrics lead to vanishing

one-, two-, and three-loop contributions for the matrix sigma model. Indeed
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the contribution of the off-diagonal matrices needs to be carefully examined.

It is important to measure their relevance at least for the first nontrivial term.

Failure of the cancellation process at this level would almost certainly lead
to the conclusion that matrix theory can only be consistent for flat space.

The first nontrivial test involves the sixth-order term in the expansion of the

KaÈ hler potential. We show that, by a particular choice of ordering and the

addition of a particular commutator term (that vanishes on the classical moduli

space), this contribution will dissapear for Ricci flat metrics. The condition

to be satisfied for this to be the case is identical to one of the mass conditions
deduced in ref. 10.

The perturbative expansion at one-loop level is sketched in Fig. 1. Each

vertex corresponds to a term in the expansion of the KaÈ hler potential. The

external lines correspond to the number of background fields F . The first

line thus corresponds to the Ricci tensor RIJÅ 5 d KKÅ KIKJÅ KÅ evaluated at the

special point about which we have chosen the normal coordinates.2 The
second line corresponds to a correction of order F 3, etc. Saying that the

metric is Ricci flat at the point F 5 0 amounts to having the first term equal

to zero. Saying that it is Ricci flat everywhere implies that every line (the

coefficient for each power of F ) is zero.

The one-loop contribution reads

d K1L 5
1

e
o
ij

ln(det(gij)) with (gIJÅ )ij 5
- 2

- F I
ij - F JÅ

ji

K( F , F Å ) (15)

where the determinant is taken over the indices I and JÅ . As discussed in

Fig. 1. Loop expansion.

2 The series starts at order F 2 since this is the first relevant contribution inside the full
superspace integral.
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Section 4.2, this contribution has to be set to zero. Equivalently this leads

to the condition that for each i, j

det(gij) 5 1 (16)

This is precisely one of the mass conditions deduced in ref. 10.

This condition first becomes nontrivial for the third line of Fig. 1, which
represents the sum of a term coming from all possible connected contractions

of the two fourth-order terms in the KaÈ hler potential and the contraction of

single sixth-order term with itself.

In ref. 10 the fourth-order term was found to be the totally symmetrized

product. The sixth-order term is more intricate,

K6 5 KIKMJÅ LÅ NÅ IKMJÅ LÅ NÅ

2
4

3
d PPÅ KIMJÅ PÅ KKPLÅ NÅ (MIKNÅ JÅ LÅ 2 MIJÅ NÅ KLÅ

1 NÅ IKMJÅ LÅ 2 NÅ IJÅ MKLÅ ) (17)

where for compactness we denote the chiral fields solely by their complex

indices, i.e., Ii 5 F I
i, JÅ i 5 F J

i , etc. The only other possible terms that could

be added to this are terms which disappear under the contractions being
considered above, i.e., terms which are zero when there are less than three

nondiagonal matrices. Such terms can only be constructed from the product

of three commutators. Presumably the difference between the result (17)

and the complicated form presented in ref. 10 amounts to the addition of

such terms.

Imposing the fact that the determinant of the metric is unity to all orders
is a difficult task which has not been performed. We believe that this should

be feasible order by order in perturbation theory.

5. CONCLUSIONS

We have shown that the one-loop calculation for the effective action for

matrix string theory in a curved space has divergences corresponding to

nonlocal terms connecting together two or more diagonal elements. These

terms arise from simple matrix generalizations of the string-theory beta-

function calculation. They correspond to powers of traces and, since the

original action is postulated to contain a single trace, cannot be renormalized
into a redefinition of the KaÈ hler potential. This imposes that each order in

the loop expansion has to be set to zero. Retaining only the diagonal contribu-

tions to the divergences leads to topological restrictions on the type of back-

ground spaces; they are Ricci flat with a vanishing Euler density. There are
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also constraints due to the off-diagonal terms; the metric has to be unimodular.

At lowest nontrivial order it is possible to find particular matrix orderings

and commutator terms that satisfy this condition.
The analysis of this article did not depend on the size of the matrices

and it is hard to see any hidden subtleties in the taking of the large-N limit

that might change the analysis for infinite N.3

It is also not at all obvious how to modify the gauged matrix sigma

models to have a more general applicability. The addition by hand of powers

of traces to cancel the divergences would be ad hoc and it is not clear how
the inclusion of higher derivative terms could improve the problem. It seems

likely that there is something more fundamental missing from the description.

Certainly one is all too aware of the lack of a basic principle to guide us

and the lack of a solid set of fundamental building blocks from which to

construct actions. Perhaps this is another sign [17 ] that matrix variables are

insufficient to describe curved space, even for infinite N.
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